SAM-MSF?: SAM finetune-based Multi-Scale
Feature Fusion for Retinal Vessel Segmentation

Abstract—Medical image segmentation is a significant issue
in computer vision. Recently, the Segment Anything Model
(SAM) has demonstrated powerful segmentation performance
in natural images. Although SAM has been extensively evalu-
ated across various domains, its adaptability to retinal vessel
segmentation has not yet been explored. To bridge this re-
search gap, this paper proposes a retinal vessel segmentation
method based on fine-tuning SAM and multi-scale feature fusion
(MSF?) strategies. This paper begins by fine-tuning the attention
matrix in SAM using a low-rank adaptive strategy, allowing
the model to learn medical image features. Subsequently, a
cross-attention mechanism is employed in the SAM decoder
module to fuse shallow and deep features, capturing vascular
information at multiple scales. Finally, a post-refinement network
is utilized to enhance the segmentation results of the vessels.
Extensive experiments on multiple public datasets demonstrate
that SAM-MSF? achieves superior retinal vessel segmentation
performance across different domain datasets. Moreover, our
observations indicate that employing few-shot learning for fine-
tuning SAM on these datasets is unnecessary. Code is available
at https://anonymous.4open.science/r/SAM-MSFF-DF0OB/

Index Terms—Segment Anything, Vessel Segmentation, Medi-
cal Imaging, Parameter-Efficient Fine-Tuning

I. INTRODUCTION

The Segment Anything Model (SAM) [15]], a groundbreak-
ing large model for image segmentation, excels in generating
precise target masks either fully automatically or interactively.
It has demonstrated outstanding performance in the semantic
segmentation of natural images, attracting widespread atten-
tion. However, despite its success in natural image scenar-
ios, SAM’s performance in medical imaging remains subpar.
Thanks to the extensive application of Parameter-Efficient
Fine-Tuning (PEFT) methods, works such as SAMMed [?2],
AutoSAM [11], and Medical SAM Adapter [27] have been
proposed, advancing the application of large segmentation
models in medical imaging. SAMMed [2] compiled and orga-
nized the largest medical image segmentation dataset to date,
utilizing the Adapter method [8|] for fine-tuning. However,
the input size for SAMMed is limited to 256x256 pixels,
significantly restricting its segmentation performance on high-
resolution images. AutoSAM [11] froze the encoder’s weights
and replaced the mask decoder with a prediction head that
does not require prompts for training and inference. However,
AutoSAM does not fine-tune the encoder, raising doubts
about whether the features from natural images can achieve
optimal results in the medical domain by merely fine-tuning
the decoder. The Medical SAM Adapter [27] introduced the
Spatial Depth Transposition (SD-Trans) technique for 2D to
3D adaptation and proposed the Hyper-Prompt Adapter (Hyp-

Adpt) for prompt condition adaptation. It employed both serial
and parallel adapters for fine-tuning. Nevertheless, this work
primarily targets organ and tumor segmentation, leaving the
potential of SAM for segmenting fundus vessels unexplored.

The following challenges exist for vessel segmentation
using SAM fine-tuning methods: 1) Difficulty in interaction.
Most prior work (such as SAM [15], and SAMMed [2])
heavily relies on the quality of prompts. The complex structure
of blood vessels is not suitable for this interactive segmentation
method, which hinders the application of SAM in vessel seg-
mentation. 2) Poor boundary segmentation. SAM itself handles
mask boundary details rather coarsely, whereas vessel segmen-
tation critically depends on accurately delineating boundary
details. 3) Input size. The transformer architecture requires a
fixed input size. Previous approaches often resize the image
directly, resulting in the loss of detail-rich information crucial
for vessel segmentation. 4) Mulit-scale nature of vessels. The
previous work has not optimized for multi-scale features.
Generally, the first-layer features of the image encoder cap-
ture more general image boundary details, while the final-
layer features contain more global image context information.
For thin vessel segmentation, boundary details captured by
the first layer are essential; for thick vessel segmentation,
global information from the final layer is necessary. SAM-
HQ [14]] proposes a multi-scale-based post-refinement scheme
suitable for fine-tuning models. This method directly fuses
the first-layer and final-layer transformer features by addition.
However, the importance of these features should vary in
different regions, i.e., in areas with thinner vessels, the first-
layer features should be emphasized, and vice versa for thicker
vessels.

To address the above challenges, this paper proposes a
new SAM finetune-based multi-scale feature fusion (SAM-
MSF?) method and applies it to retinal vessel segmentation
tasks without prompt setting. Specifically, this paper first fine-
tunes the attention matrices in the SAM encoder using a low-
rank adaptive (LoRA) strategy [9], enabling the model to
learn features from medical images. Subsequently, a cross-
attention mechanism is employed to fuse shallow and deep
features, capturing vessel information across multiple scales,
which are then fed into the SAM decoder module. Finally, a
post-refinement network enhances the segmentation of vessels.
The main contributions are as follows:

o SAM-MSF? represents the first attempt, to our knowl-
edge, to apply SAM to vessel segmentation tasks. We also
evaluate the performance of various fine-tuning methods
for vessel segmentation.


https://anonymous.4open.science/r/SAM-MSFF-DF0B/
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Fig. 1. The architecture of the proposed SAM-MSF2. It consists of an image encoder with LoRA and a mask decoder with a feature fusion module.

o We introduce a cross-attention method to guide the fusion
of feature layers within the image itself. By establishing
attention connections between these layers, we enhance
the utilization of both local and global information in the
image, thereby improving the accuracy and robustness of
vessel segmentation.

o Extensive experiments demonstrate that our approach
achieves state-of-the-art segmentation results on various
publicly available retinal vessel segmentation datasets.
Additionally, we observe that fine-tuning SAM is unnec-
essary for few-shot learning across datasets from different
domains.

II. METHODS

The framework of our model (SAM-MSF?) is shown in Fig.
[Il consisting of an image encoder with LoRA and a mask
decoder with a feature fusion module. To avoid the impact of
SAM’s original low-resolution input on our task, we divided
the image into several patches for segmentation inference.
Finally, we stitched the image patches together into a complete
image through dilation prediction. In the following sections,
we will provide a detailed explanation of how our method
fine-tunes the SAM image encoder and integrates multi-scale
features for mask decoding.

A. Image Encoder with LoRA

The Image Encoder is the most parameter-intensive compo-
nent of SAM, and fully tuning this module would incur signif-
icant computational costs. To maximize the use of the medical

domain knowledge integrated into SAM, we introduced LoRA
fine-tuning techniques [9]], a classic parameter-efficient fine-
tuning method. For a pre-trained weight matrix Wy € R4¥F.
We keep the original weight matrix parameters W unchanged
and only fine-tune and update the weight matrix AW. The
updated weight matrix is decomposed into the product of two
low-rank matrices A and B, where A € R"** B € R4*" 1ts
input z will be fed into the original weight matrix W, and the
updated weight matrix AW

Wax =Wyx + AWz = Wox + BAx (1)

Specifically, we freeze all the parameters in the original im-
age encoder, including the Adapter introduced in SAMMed2d
[2]], and deploy LoRA matrices for the attention matrices of n
Transformer blocks. To balance performance and parameter
count, we empirically use rank-16 LoRA matrices to the
attention matrices (@, K, V, and O) rather than add LoRA
matrices only to the ) and V' matrices [5]]. As illustrated in
Fig. 2] in the Transformer Block, x is input into the fine-tuned
attention module, resulting in the attention output A;:

Ai(x) =W + B Az, i=gq,k,v,0 2)

B. Mask Decoder with feature fusion module

Based on the original Mask Decoder, we modify the decoder
structure with inspiration from SAM-HQ [14], and introduce
cross-attention fusion to enhance multi-scale image perception.
Specifically, we extract features from the first and last layers of
Transformer-LoRA blocks and compute cross-attention using
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Fig. 2. Transformer-LoRA Block. During fine-tuning, only low-rank matrices
A and B are updated.

image embeddings. The outputs after feature fusion F'y,s. are
subsequently input into the SAM-HQ decoder, illustrated in
Fig. [I] Specifically, the output F; of the i-th Transformer-
LoRA Block serves as the keys (k) and values (v) in the cross-
attention computation, while the image embedding F{, serves
as the queries (g). Then, the shallow features and deep features
after attention-weighted calculation are added pixel-wise. This
paper takes the first-layer features as shallow features and the
last-layer features as deep features.

Ftuse = Conv(Attention(Q, K1, V1))® (3)
Conv(Attention(Q, K, Vy)) 4

T
Attention(Q, K, V) = softmax <QK > v (5)

Vdy
Q = W, Fy, (6)
K; =WyF;, i=1n (7N
Vi=W,F;, i=1n ®)

Ultimately, SAM-HQ’s decoder H(Q decodes the segmen-
tation mask using the output Fj,,, of the Image Embedding
and the output of the feature fusion module F'pyg.:

Mask = HQ(Ffu557Fimg) (9)

C. Training and Inference Strategies

Before training, we crop the images into 256256 patches
to fit the image input size of SAM and remove images where
the vessel region in the mask is less than 1%. During the
inference phase, we first pad the image dimensions with zero
pixels to the nearest multiple of 256. We then perform sliding
window prediction using a window size of 256x256 and a

stride of 128. For each prediction, only the central 256x256
region is retained for stitching, resulting in the final predicted
mask. The loss function supervising the mask predictions is a
linear combination of cldice loss [23|] and dice loss [17]], with
a ratio of 1:1. The loss function can be represented as:

L= O-5Ldice + 0-5£cldice (10)
2x Y NY
Edice:1*7i| nYy| (11)
Y[+ Y]
Tyree(Ys,Y) X Toens(Vs, Y
Lodioe =1 — 2 x DreelTs V) X Toens Vs, 1) -

Tprec(Y5'7 Y) + Tsens(YS7 Y)

where Y represents the ground truth, Y denotes the predicted
value. Yg and Yg are the soft skeleton [23|] of Y and Y,
respectively. Tje. and T, s Tefer to precision and sensitivity.

III. EXPERIMENTS AND RESULTS

A. Dataset

We utilize six publicly available datasets for retinal blood
vessel segmentation to evaluate the performance of our SAM-
MSF? model: STARE [7], CHASE_DBI1 [6], DRIVE [24],
DRIVE2, HRF [18]], and FIVES [13]. Here are brief descrip-
tions of each dataset:

o STARE [7]: Contains 20 fundus images, including 10
with lesions and 10 without, with an image resolution
of 605 x 700 pixels.

« CHASE_DBI [6]: Consists of 28 color retina images (999
x 960 pixels each) collected from both eyes of 14 school
children.

o DRIVE [24]: Includes 40 color fundus images, with 7
cases featuring abnormal pathology. Each image has a
resolution of 584 x 565 pixels.

o DRIVE2: An augmented dataset based on the DRIVE
dataset, hosted on Kaggle.

o HRF [18]: Comprises 45 images for retinal vessel seg-
mentation, with image sizes of 3304 x 2336 pixels.

o FIVES [13]]: Contains 800 high-resolution multi-disease
color fundus photographs, each sized 2048 x 2048 pixels.

Our SAM-MSF? uses the training and validation sets from the
FIVES dataset for model training.

B. Implementation Details

Our method is implemented in PyTorch and trained on 4
NVIDIA 3090 GPUs, each with 24GB memory. We use the
AdamW optimizer with an initial learning rate of le-4, with
the learning rate divided by 2 at the 5th and 10th epochs.
During training, the batch size is 32.



TABLE I

QUANTITATIVE COMPARISON OF THE SEGMENTATION EFFECT OF DIFFERENT METHODS ON SIX DATASETS

Dataset Method IoU?T | Dicet | clDicet | AUCT | HD95|
Ours 45.68 | 62.51 | 55.35 78.16 | 87.70
STARE LoRA+HQ 4493 | 61.78 | 54.56 77.79 | 91.28
LoRA 42.40 | 59.27 51.95 76.50 96.78
SAMMed2d(Fine-tuned) | 44.63 | 61.67 | 55.06 78.00 89.14
Ours 58.02 | 73.38 | 81.33 89.69 | 46.04
LoRA+HQ 57.58 | 73.18 | 81.28 89.58 | 46.78
CHASE_DBI | [ RA S6.84 | 7241 | 7967 | 88.52 | 5334
SAMMed2d(Fine-tuned) | 54.54 | 70.52 | 78.86 89.55 54.87
Ours 50.19 | 66.73 | 60.99 80.41 | 46.07
DRIVE LoRA+HQ 50.10 | 66.64 | 60.27 80.02 | 47.41
LoRA 49.03 | 65.67 | 58.04 78.76 | 51.60
SAMMed2d(Fine-tuned) | 49.22 | 65.84 | 58.59 78.65 | 47.23
Ours 5421 | 70.27 | 67.79 84.27 | 3145
LoRA+HQ 54.28 | 70.33 | 67.39 84.09 | 31.97
DRIVE2 LoRA 54.21 | 70.26 66.13 83.42 34.07
SAMMed2d(Fine-tuned) | 53.86 | 70.04 | 66.96 83.18 32.97
Ours 64.15 | 78.02 | 78.11 89.94 | 74.30
HRF LoRA+HQ 63.99 | 77.90 | 77.64 89.73 75.32
LoRA 63.27 | 71.37 77.27 89.23 81.76
SAMMed2d(Fine-tuned) | 62.9 77.06 | 77.31 89.15 89.03
Ours 77.33 | 86.28 | 86.65 91.20 | 76.79
FIVES LoRA+HQ 76.63 | 85.76 | 85.77 90.91 84.12
LoRA 75.55 | 84.97 | 85.03 90.29 88.33
SAMMed2d(Fine-tuned) | 75.32 | 84.86 | 84.97 90.11 91.31

C. Metric

We test the performance of various fine-tuning methods
on different datasets. The evaluation indicators selected IoU
[29]], Dice [17]], cldice [23]], AUC, [12] and 95% Hausdorff
distance(HD95) [22], and their calculations are as follows:

2x Y NY
Loy = 22XV 0Y] (13)
YUY
2x Y NY
Dice = 22X 1Y 0 Y] (14)
Y|+1Y|
cldice — 2 x Tprec({Sv Y) X Tsens(Y5'7 ):) (15)
Tprec(Y57 Y) + Tsens (YSv Y)
1 n—1
AUC = 5 Z(%‘H — ) - (Yi + Yit1) (16)

i=1
where n is the total number of thresholds, x; represents the
false positive rate (FPR) at threshold ¢, and y; represents the
true positive rate (TPR) at threshold <.

HDgys = maz(h(Y,Y),h(Y,Y)) (17)

where h(A, B) = ffg?grbnigHa—bH,and 125% g(z) denotes the
€
95% quantile value of g(x) over the set X. [22]

D. Experimental Results

This paper validates the SAM-MSF? from two perspec-
tives: evaluating its segmentation performance across different
datasets and assessing its few-shot learning capability on
various datasets. The models included in the performance
comparison are as follows: 1) Fine-tuning the Adapter of
SAMMed2d [2] (SAMMed2d (FIne-tuned)); 2) Fine-tuning
SAM using LoRA [9] (LoRA); 3) Adding an HQ decoder
[14] to model 2) (LoRA+HQ).

We train the models using the training and validation
sets from the FIVES dataset and evaluated their segmenta-
tion performance and generalization ability across different
datasets. Table [] presents the segmentation performance of
various methods on these datasets. From the table, our method
achieves the best or equivalent results across all evaluation
metrics compared to existing methods. While it slightly lags
behind the LoRA+HQ method on the DRIVE2 dataset, our
method demonstrates a significant advantage on all other
datasets. This advantage arises from the introduction of cross-
attention to process features, allowing for more effective
integration of local and global features, resulting in higher
quality vascular segmentation masks. Fig. 3] provides a visual
comparison of our model’s performance with other models on
the FIVES test set.

The following experiment involves performing few-shot
learning on other datasets using pre-trained weights obtained
from training on the FIVES dataset. This experiment aims to



Fig. 3. Comparison of the segmentation results on four samples within FIVES datasets between SAM-MSF? and SOTA SAM fine-tuned-based methods.

study the influence of different numbers of training samples
on the domain adaptability of fine-tuning SAM. Specifically,
we sort the Dice scores of all the images in each dataset in
descending order and assign them alternately to the training
set and the test set. We then randomly select 20%, 40%, and
100% of the images from the training set for training and
evaluate the performance in the test set. To avoid sampling
error, the 20% and 40% sample groups are trained five times
in different batches and the results are averaged.

Figs. f] and 5] provide the results of few-shot learning on
the CHASE_DB1 and HRF datasets after pre-training various
methods on the FIVES dataset. It can be observed that the
improvement from few-shot fine-tuning on target datasets is
not significant, even with an increased amount of training
data. On the CHASE_DB]1 dataset, our method achieve a Dice
score of 73.32% after training on FIVES. The Dice scores for
the 20%, 40%, and 100% groups are 75.27%, 75.56%, and
75.76%, respectively. This means that using just 3 images as
the training set improves the score by 1.95%. When the data
volume was increased fivefold, the Dice score only improves
by an additional 0.49%. On the HRF dataset, our method
achieves a Dice score of 77.94% after training on FIVES. The
Dice scores for the 20%, 40%, and 100% groups are 78.60%,

78.80%, and 78.98%, respectively. Fine-tuning with 5 images
results in a score improvement of only 0.66%, and increasing
the data volume fivefold leads to just an additional 0.38%
improvement. Therefore, for the vessel segmentation task, the
segmentation performance mainly depends on the effectiveness
of the pre-trained weights.
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Fig. 4. Improvement of Dice for Different Models under Few-shot Learning
in CHASE_DBI1 dataset
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Fig. 5. Improvement of Dice for Different Models under Few-shot Learning
in HRF dataset

IV. DISCUSSION

For retinal vessel segmentation tasks, the cost of manual
annotation is quite high. Therefore, we aim to focus on
the fine-tuning performance of foundational models in the
field of retinal segmentation. We have found that the fine-
tuned models exhibit better generalization performance on
high-resolution datasets compared to other datasets. Retinal
vessel segmentation typically requires accurate extraction of
fine vessel structures. High-resolution datasets provide richer
and more detailed image information, enabling the model
to better encode and capture the subtle details of blood
vessels. In contrast, low-resolution datasets may face issues
of information loss and blurriness, limiting the accuracy of
segmentation methods. This also means that large models, with
their greater number of parameters, can better learn the general
features of blood vessels.

Additionally, we also hope to explore whether large models
need extra training to adapt to target domain data. The exper-
imental results did not reflect this necessity. Traditionally, for
specific tasks, large models need to be fine-tuned on target
domain data to adapt to the unique characteristics of that
domain. However, in our experiments, even without additional
target domain training, the performance of large models is very
close to that after adaptation training. Large models typically
possess stronger generalization capabilities, allowing them to
learn richer feature representations from large-scale source
domain data. This enables large models to better adapt to the
diversity and complexity within the target domain.

However, we also need to note that using the patch-based
sliding window prediction method, while it can adapt to high-
resolution images without loss of accuracy, requires more
time during inference. Additionally, high-quality annotated
retinal vessel datasets like FIVES are still too scarce to
fully demonstrate the advantages of large models. Improving
model performance under conditions of data scarcity remains
a challenge.

V. CONCLUSION

We propose a novel SAM-based retinal vessel segmenta-
tion method using LoRA fine-tuning and multi-scale feature
fusion strategies. This method can optimize the local/global

information mismatch that may occur in the feature fusion
process of the HQ decoder. We also introduce a cross-attention
mechanism that enables the model to decide whether to focus
more on local or global information based on image embed-
dings. We evaluate our approach on six public retinal vascular
segmentation datasets, and our approach outperforms other
fine-tuning methods on various metrics. Finally, through the
exploration of few-shot learning, we demonstrate the potential
of the foundational model in the application of retinal vessel
segmentation.
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